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Abstract – This paper presents a semi-automated cloud and 

cloud shadow masking method, developed for SPOT5 

satellite data over New South Wales (NSW), Australia. As 

clouds are very similar to several surface features in these 

data, attempts at using traditional image classification 

techniques have not been effective. The new method uses 

morphological feature extraction, where marker pixels are 

identified using image-specific, automatically defined 

criteria, and mask segments are grown using the watershed 

from markers transformation. Manual input is only 

required to add and delete marker points in order to 

improve the masks. The method has achieved an overall 

accuracy of around 80 %, with most errors due to the 

commission rather than omission of pixels. This has proved 

satisfactory, and the method has been incorporated into the 

processing stream for woody vegetation change detection by 

the NSW government. 
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1. INTRODUCTION 

 

Clouds are often a problem when conducting remote sensing of 

the earth's surface as they can locally obscure surface features 

and increase reflectance. Shadows cast by clouds also obscure 

surface features through decreasing surface reflectance. The 

masking of clouds and their shadows, and the subsequent 

exclusion of these contaminated pixels from analysis, is an 

important pre-processing step in many applications. 

 
The Statewide Landcover and Trees Study (SLATS) conducted 

by the state governments of Queensland and New South Wales 

(NSW) in Australia, is an ongoing project that uses Landsat 

Thematic Mapper (TM), Landsat Enhanced Thematic Mapper 

Plus (ETM+) and SPOT5 data, to map and monitor change in 

woody vegetation extent annually (Danaher et al., 2010). The 

presence of clouds and their shadows affects the calculation of 

foliage projective cover (FPC), which is used to map woody 

vegetation, leading to false anomalies when changes in FPC are 

examined. 

 
Due to the large areas being analysed, and the ongoing data 

acquisition, automation is important. For example, NSW covers 

an area greater than 800,000 km2, and requires at least 323 

SPOT5 images for a complete coverage (Figure 1). Many of the 

SLATS processing steps are fully automated, such as correcting 

for atmospheric effects, variations in the Bidirectional 

Reflectance Distribution Function (BRDF), and the calculation 

of FPC (Meier et al., 2011). The development of an accurate 

fully-automated cloud and cloud-shadow masking method 

would remove a significant delay in the processing stream, 

although this has not yet been achieved. 

 
Figure 1.  The location of the 142 cloudy SPOT5 images 

acquired during 2007-2009 over New South Wales, Australia 

(shown by their centre points). Subsets shown in subsequent 

figures were taken from the four numbered images. 

 

 

2. CLOUDS IN SPOT5 DATA 

 

The SLATS method was originally developed to use Landsat 

TM/ETM+ data with 30 m pixels, exploiting over 20 years of 

data. Detecting clouds in these data is aided by thermal infrared 

bands, as clouds often have a lower temperature than the ground 

surface (Huang et al., 2010). Improving the spatial resolution of 

SLATS by using SPOT5 data (10 m multispectral and 2.5 m 

panchromatic) has required a method that can work without a 

thermal infrared band. Such a method must distinguish clouds 

using the four available bands: green (500-590 nm), red 

(610-680 nm), near-infrared (780-890 nm) and mid-infrared 

(1580-1750 nm). 

 

Clouds have a large variety of shapes, textures, and reflectance 

characteristics, and in SPOT5 data they are similar to reflective 

non-cloud features, such as sandy beaches or bare soil 

(Figure 2). Attempts at using traditional image classification 

techniques to detect clouds have not been effective, and usually 

result in the commission of these reflective surface features and 

the omission of thin, less reflective cloud. To avoid these errors 

Le Hégarat-Mascle and André (2009) developed a method that 

detected potential cloud objects, and removed those that did not 

have a matching cloud-shadow. Due to the complex nature of 

their method, we have not been able to replicate it, although we 

hope to incorporate elements into future versions of our method. 



 

 
Figure 2.  Clouds and spectrally similar features in four SPOT-5 images from New South Wales, Australia. The graph shows bottom-

of-atmosphere reflectance for pixels identified by the numbered black squares in the images. Cloud spectra are shown in solid lines, 

while other features are dashed lines. Images are shown with bands 3, 2 and 1 as RGB, and image numbers are those on Figure 1. 

 

 

3. METHOD 

 

The cloud and cloud shadow masking method presented here 

uses morphological feature extraction, where marker pixels are 

identified and mask segments are grown using the watershed 

from markers transformation. Manual input is only required to 

add and delete marker points in order to improve accuracy. 

 

The method is split into two separate components, with details 

in the following sections. Firstly, a cloud mask is created, 

using the image as input. Secondly, the cloud shadow mask is 

created by using the image, acquisition parameters from the 

image metadata, and the cloud mask produced previously. 

 

All image processing is implemented with the freely-available 

Python programming language, using functions from the 

standard Python library (Oliphant, 2007), as well as from the 

following open-source Python modules: Numpy (Oliphant, 

2006), Scipy (Jones et al., 2001), Pymorph (Dougherty and 

Lotufu, 2003; Coelho, 2010), and GDAL (GDAL, 2009). 

 

3.1 Clouds 

Cloud masks are created using band 1 (green) of the SPOT5 

data, as clouds appear to be consistently bright in this band 

compared to a variety of land cover types, and using a single 

band greatly simplifies the processing. Marker pixels for 

clouds are defined with a threshold in this band, which is 

determined by examining the band histogram. It is assumed 

that the right-most peak in the histogram (often near the 

maximum value) corresponds to cloud pixels, and so the 

position of the trough to the left of this peak is used as the 

threshold. This threshold often includes small features such as 

buildings, which are removed through converting the marker 

pixels to a binary image and subjecting it to morphological 

erosion. The position of the remaining marker pixels are then 

converted to a point vector file with a point at the central 

location of each pixel. 

 

Cloud objects are grown from the marker pixels using the 

watershed from markers transformation of Felkel et al. (2001), 

shown in Figure 3. Dougherty and Lotufu (2003) present a 

detailed description of this morphological operation. First the 

morphological gradient of band 1 is calculated, giving an 

image where the edges of objects are high values and pixels 

within objects are low values. The watershed algorithm then 

grows segments out from the marker pixels until it reaches an 

edge with a neighbouring segment. This requires the 

neighbouring non-cloud pixels to also have marker pixels 

(referred to as external markers) so that the cloud segments are 

grown until they encounter an edge with non-cloud segments. 

After experimentation with different rules, we defined these 

external markers as all pixels greater than 900 m from a cloud 

marker. Before the segments are grown, connected groups of 

internal marker pixels are labelled with integers, while all 

external marker pixels are given the same integer label. This 

allows individual segments to be grown for each cloud, with a 

single large segment for the background. 

 

Once the cloud segments are grown, they are converted to a 

binary image, smoothed and buffered. Smoothing is achieved 

through morphological opening, and is used to simplify any 

overly complex shapes not practical in an image mask. 

Buffering is achieved through morphological dilation to ensure 

that thin cloud pixels at the edges of clouds are included in the 

mask. 

 

Generally, the method results in commission errors, such as 

large reflective buildings, concrete spillways below large 

dams, beach sand, playa lakes and salt crusts. It will also have 

omission errors, for thin clouds that appear semi-transparent. 

To avoid these errors, the marker point vector file can be 

edited, before re-running the watershed algorithm. 

 

 

 
Figure 3. Stages in growing cloud segments using the 

watershed from markers transformation: (a) An image subset 

with bands 3, 2 and 1 as RGB; (b) Internal markers (red dots); 

(c) External markers in blue and the morphological gradient as 

greyscale; (d) Cloud segment in red. 



3.2 Cloud-shadows 

Cloud shadows are identified by searching for dark objects in 

the area likely to contain them. This requires the apparent solar 

azimuth (ϕa) to be calculated, using equation 1. 
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where ϕs is the solar azimuth, θs is the solar zenith, ϕv is the 

viewer (sensor) azimuth, and θv is the viewer zenith. The area 

of likely shadow can then be determined by projecting the 

cloud mask along the apparent solar azimuth for a range of 

possible cloud heights. Complications due to variations in 

solar and viewing geometry across the scene, surface 

topography and the vertical shape of clouds are ignored. As 

cloud across the southern hemisphere’s mid-latitudes is mostly 

low (Stubenrauch et al., 2005), cloud height is restricted to less 

than 3 km. This limits the area of likely shadow, simplifying 

the search for shadow pixels. If an image contains high cloud 

whose shadows are missed, the maximum height can be altered 

before re-running the algorithm. 

 

The next stage identifies shadow marker pixels within the area 

of likely shadows. This, and all subsequent processes, uses 

band 3 (near-infrared) of the SPOT5 data, as cloud shadows 

appeared to be consistently dark in this band compared to a 

variety of land cover types. Marker pixels for cloud shadows 

are defined with a threshold in this band, which is determined 

by examining the band histogram. Firstly, a histogram is 

produced for the pixel values within the likely shadow area. 

This area is then buffered by 10 pixels to identify the 

surrounding area, which does not contain any clouds or 

shadows, and the histogram of pixel values from this area is 

produced. The subtraction of the second histogram from the 

first produces a graph of the pixel values most likely due to 

cloud shadow pixels. The peak of this graph is then identified, 

and used as the threshold for cloud shadow marker pixels. The 

position of the marker pixels are then converted to a point 

vector file to facilitate later editing if required. 

 

External markers for cloud shadows are defined differently 

than the method used for clouds, as the simple distance criteria 

did not produce satisfactory results, with shadow segments 

commonly growing too large. To stop this, external markers 

are defined by local thresholds based on pixel values within 

500 m from internal markers (where the local regions 

surrounding internal markers less than 500 m apart were 

combined). Within each region the external markers were 

defined as having a value greater than the local mean pixel 

value. This ensures that the shadow segments grow into locally 

dark pixels only. Once the internal and external markers are 

defined for the cloud shadows, segments were grown using the 

same method as described for clouds, including being 

smoothed and buffered.  

 

 

4. RESULTS 

 

The cloud and cloud shadow masking method has been applied 

to 142 cloudy SPOT5 images acquired during 2007 to 2009 

over NSW (Figure 1). Processing was carried out on the NSW 

government high performance computing facility (4 machines, 

each with 2 Intel Xeon 3.00 GHz quad core processors and 64 

GB of memory, running a 64 bit GNU/Linux operating 

system). Production of a mask for a single SPOT5 image (~55 

million pixels) took around two minutes. 

 

Editing time for the marker points was highly variable, ranging 

up to half an hour. Longer times were only necessary when an 

image contained many less reflective cloud objects. In these 

cases it was necessary to edit 2-3 times, re-growing the cloud 

segments between edits to identify problem areas. 

 

Some examples of cloud and cloud-shadow masks are shown 

in Figure 4. The method is capable of masking most clouds 

and their shadows, dependant on the amount of cloud and the 

time available for editing marker pixels. It cannot generally 

mask very transparent clouds, and has difficulty with cloud 

and shadow segments that overly features with similar 

reflectance properties. 

 

 

 
Figure 4.  Subsets of SPOT5 images (top) and their corresponding cloud and cloud shadow masks (below). Subsets are 10 km by 

10 km, shown with bands 3, 2 and 1 as RGB, while masks are coloured with clouds as white and cloud shadows as black. 



 

Table 1.  Overall accuracies of the cloud and cloud shadow masking method, and the commission and omission errors for the cloud 

and shadow classes. All accuracy and error values are percentages (%), and image numbers refer to Figure 1. 

 

  Cloud  Shadow   

Image  Commission Omission  Commission Omission  Overall accuracy 

1  26 1    6 0  89 

2  23 1  22 9  83 

3  46 4  18 6  78 

4  26 4  34 0  79 

Total  30 2  20 4  82 

 

 

As alternative data on the distribution of clouds is not available, 

validation of the method against independent data was not 

possible. Instead, a set of 300 manually classified reference 

pixels were sampled from each image. Sampling was stratified 

equally between pixels classified as cloud, shadow, and those 

within 5 km of a cloud/shadow, to ensure that the assessment 

targeted cloudy areas. The results confirm the observation that 

although omission errors are low, ranging from 1-9 %, the 

commission errors are larger, ranging from 6-46 % (Table 1). 

Differences in mask accuracy between images relates mostly to 

the number of cloud objects (e.g. image 3 has more clouds). 

While the overall accuracy is reasonably high, at approximately 

80 %, future improvements are anticipated, and are discussed 

below. 

 

 

5. FUTURE IMPROVEMENTS 

 

The cloud and cloud shadow masking method presented here 

has proven to be relatively fast and robust, working on images 

that have a large variety of land cover and cloud types. It has 

also been successfully applied to 29 Landsat TM/ETM+ images, 

facilitating the calculation of FPC and the detection of changes 

to the extent of woody vegetation across NSW. 

 

The method was designed for immediate application, and has 

several known limitations. Some areas being investigated for 

future improvement are incorporating multiple image bands; 

using image subsets to search for local thresholds, and; the 

pairing of cloud and shadow objects. For example, 

2-dimensional density plots are being used to establish 

consistent band-ratio thresholds for defining external marker 

pixels, which will improve segmentation, smoothing and 

buffering. 
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